A Constitutive Law for Mitral Valve Tissue

Abstract
Biaxial mechanical testing and theoretical continuum mechanics analysis are employed to formulate a constitutive law for cardiac mitral valve anterior and posterior leaflets. A strain energy description is formulated based on the fibrous architecture of the tissue, accurately describing the large deformation, highly nonlinear transversely isotropic material behavior. The results show that a simple three-coefficient exponential constitutive law provides an accurate prediction of stress–stretch behavior over a wide range of deformations. Regional heterogeneity may be accommodated by spatially varying a single coefficient and incorporating collagen fiber angle. The application of this quantitative information to mechanical models and bioprosthetic development could provide substantial improvement in the evaluation and treatment of valvular disease, surgery, and replacement.