Synthesis of fatty acid esters and diacylglycerols at elevated temperatures by alkalithermophilic lipases from Thermosyntropha lipolytica
- 11 July 2009
- journal article
- Published by Oxford University Press (OUP) in Journal of Industrial Microbiology & Biotechnology
- Vol. 36 (10) , 1281-1287
- https://doi.org/10.1007/s10295-009-0610-3
Abstract
LipA and LipB of Thermosyntropha lipolytica DSM 11003 as previously published are the most alkalithermophilic (pH opt 25°C = 9.4–9.6, T opt = 96°C) and thermostable (T 1/2 24 h = 74–76°C) lipases currently known. The purified enzymes were analyzed in organic solvents for their ability to catalyze synthesis of diacylglycerols and various alcohol fatty acids. To obtain 100% recovery and avoid a 40% and 50% loss of catalytic activity during lyophilization of purified LipA and LipB, respectively, addition of 1 mg/ml bovine serum albumin (BSA) and 25% polyethylene glycol (PEG400) was required. LipA and LipB catalyzed esterification of fatty acids and alcohols with the highest yields for octyl oleate (LipA) and lauryl oleate (LipB) and also catalyzed synthesis of 1,3-dioleoyl glycerol, 1-oleoyl-3-lauroyl glycerol, and 1-oleoyl-3-octoyl glycerol. Isooctane was the most efficient solvent for esterification reactions at 85°C. Similar to the positional specificity for the hydrolytic reaction in aqueous solutions, LipA and LipB catalyzed in organic solvents the synthesis of diacylglycerol with esterification of position 1 and 3 with a yield of 62% for di-oleoyl glycerol. The reported conversion rates do not represent the full potential of these enzymes, since only 1/100th–1/1,000th of the protein concentrations usually used in commercial processes were available. However, use of slightly increased protein concentrations confirmed the trend to higher yields with higher protein concentrations. The obtained specificity and variety of the reactions catalyzed by LipA and LipB, and their high thermostability allowing synthesis to occur at 90°C, demonstrate their great potentials for industrial applications, particularly in structured lipid biosynthesis for substrates that are less soluble at mesobiotic temperatures.Keywords
This publication has 53 references indexed in Scilit:
- Cold active microbial lipases: Some hot issues and recent developmentsPublished by Elsevier ,2008
- Purification and Characterization of Two Highly Thermophilic Alkaline Lipases fromThermosyntropha lipolyticaApplied and Environmental Microbiology, 2007
- Studies of reaction parameters on synthesis of Citronellyl laurate ester via immobilized Candida rugosa lipase in organic mediaBioprocess and Biosystems Engineering, 2006
- Regioselective Enzymatic Synthesis of Non-Steroidal Anti-Inflammatory Drugs Containing Glucose in Organic MediaBiotechnology Letters, 2005
- Synthesis of esters by immobilized-lipase-catalyzed condensation reaction of sugars and fatty acids in water-miscible organic solventJournal of Bioscience and Bioengineering, 2005
- Candida antartica Lipase B Catalyzed Polycaprolactone Synthesis: Effects of Organic Media and TemperatureBiomacromolecules, 2000
- The solvent dependence of enzyme specificityBiochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, 1994
- Solid‐State nuclear magnetic resonance investigation of solvent dependence of tyrosyl ring motion in an enzymeBiotechnology & Bioengineering, 1993
- Dramatic enhancement of enzymatic activity in organic solvents by lyoprotectantsBiotechnology & Bioengineering, 1993
- Action de la lipase pancréatique sur les esters en émulsionBiochimica et Biophysica Acta, 1958