Ordered duplex RNA controls capsid architecture in an icosahedral animal virus
- 1 January 1993
- journal article
- letter
- Published by Springer Nature in Nature
- Vol. 361 (6408) , 176-179
- https://doi.org/10.1038/361176a0
Abstract
SMALL spherical viruses are among the simplest replicating systems in biology, yet the factors affecting their assembly, stability and disassembly are still poorly understood. A molecular switch is required for the assembly of icosahedral virus particles containing more than 60 identical subunits because strict symmetry cannot be maintained in subunit packing1. All previously reported viruses with this type of structure use a portion of the capsid protein to regulate interactions between chemically equivalent but structurally distinct interfaces2–4. We have investigated the T = 3 quasiequivalent5 nodaviruses, which are small non-enveloped viruses with a single-stranded RNA genome that infect insects6, mice7 and fish8. They undergo a well-characterized series of steps in assembly and maturation9,10, which in some respects are similar to the picornaviruses11, despite their different capsid architecture. Here we report the X-ray structure of Flock House virus at 3.0 Å resolution, which reveals an ordered RNA duplex of 20 nucleotides and a protein segment that control the subunit interactions in this animal virus. The RNA interacts with a helical protein domain of the subunit that lies inside the capsid shell. One of the helices that binds the RNA is part of a 44-amino-acid polypeptide which is autocatalytically cleaved from the initial subunit translation product after virion assembly. The structure indicates that RNA associated with the cleaved polypeptide may be important in the infection process.Keywords
This publication has 21 references indexed in Scilit:
- Properties of a new virus belonging to nodaviridae found in larval striped jack (Pseudocaranx dentex) with nervous necrosisVirology, 1992
- Structural homology among four nodaviruses as deduced by sequencing and X-ray crystallographyJournal of Molecular Biology, 1990
- Structural studies of bean pod mottle virus, capsid and RNA in crystal and solution states by laser Raman spectroscopyBiochemistry, 1990
- ICOSAHEDRAL RNA VIRUS STRUCTUREAnnual Review of Biochemistry, 1989
- Structure and assembly of turnip crinkle virusJournal of Molecular Biology, 1986
- Movement and self-control in protein assemblies. Quasi-equivalence revisitedBiophysical Journal, 1980
- Structure of southern bean mosaic virus at 2.8 Å resolutionNature, 1980
- Tomato bushy stunt virus at 2.9 Å resolutionNature, 1978
- Evidence for a Divided Genome in Nodamura Virus, an Arthropod-borne PicornavirusJournal of General Virology, 1973
- Physical Principles in the Construction of Regular VirusesCold Spring Harbor Symposia on Quantitative Biology, 1962