Abstract
Polarity of transposon Tn10 insertion mutations in the S. typhimurium ilvGEDA operon depends on the location and the orientation of the Tn10 element. One orientation of Tn10 insertions in ilvG and ilvE permits low-level expression of the downstream ilvEDA and ilvDA genes, respectively. Analysis of Salmonella ilv recombinant plasmids shows that this residual ilv expression must result from Tn10-directed transcription and does not reflect the presence of internal promoters in the ilvGEDA operon, as was previously suggested. The opposite orientation of Tn10 insertion in ilvE prevents ilvDA expression, indicating that only 1 end of Tn10 is normally active in transcribing adjacent genes. Both orientations of Tn10 insertion in ilvD exert absolute polarity on ilvA expression. Expression of ilvA is dependent on effective translation of ilvD, perhaps reflecting the lack of a ribosome binding site proximal to the ilvA sequence. Therefore, recognition of the ability of Tn10 to promote transcription of contiguous genes in the ilvGEDA operon apparently requires the presence of associated ribosome binding sites.