Study of the effect of melittin on the thermotropism of dipalmitoylphosphatidylcholine by Raman spectroscopy

Abstract
The effect of amphiphilic toxin mellitin (Mel) on the thermotropic behavior of dipalmitoylphosphatidylcholine (DPPC) has been studied by Raman spectroscopy. The spectra show that for complexes that were incubated above 40.degree. C, mellitin does not penetrate DPPC bilayers in the gel state as an intrinsic protein since the conformation of the lipid acyl chains is just slightly perturbed by the toxin. Instead, at the DPPC/Mel molar ratios investigated (Ri=5 and 15), Raman results suggest the formation of discoidal particles as complexes of apolipoproteins with phosphatidylcholines. These lipid/protein assemblies are characterized by a high conformational order, low intermolecular chain-chain interactions due to the size of the particles, and a low cooperativity of the gel to liquid-crystalline transition. The latter is biphasic for samples studied. It is believed that aggregation of these particles into larger ones occurs when the bilayers become less stable at higher temperature and that melittin is partially embedded into the hydrophobic core of the larger lipid/protein units. The freezing of the dispersion at approximately 0.degree. C also causes a reversible aggregation of the particles that leads to the formation of domains in which the interchain interactions are very similar to that of the pure lipid. The small particles of DPPC/Mel are also metastable, and with time, they form larger aggregates from which melittin is expulsed.