Shot noise in resonant tunneling structures

Abstract
We propose a quantum mechanical approach to noise in resonant tunneling structures, that can be applied in the whole range of transport regimes, from completely coherent to completely incoherent. In both limiting cases, well known results which have appeared in the literature are recovered. Shot noise reduction due to both Pauli exclusion and Coulomb repulsion, and their combined effect, are studied as a function of the rate of incoherent processes in the well (which are taken into account by means of a phenomenological relaxation time), and of temperature. Our approach allows the study of noise in a variety of operating conditions (i.e., equilibrium, sub-peak voltages, second resonance voltages), and as a function of temperature, explaining experimental results and predicting interesting new results.