Biogenesis and Early Life on Earth and Europa: Favored by an Alkaline Ocean?

Abstract
Recent discoveries about Europa - the probable existence of a sizeable ocean below its ice crust; the detection of hydrated sodium carbonates, among other salts; and the calculation of a net loss of sodium from the subsurface - suggest the existence of an alkaline ocean. Alkaline oceans (nicknamed "soda oceans" in analogy to terrestrial soda lakes) have been hypothesized also for early Earth and Mars on the basis of mass balance considerations involving total amounts of acids available for weathering and the composition of the early crust. Such an environment could be favorable to biogenesis since it may have provided for very low Ca2+ concentrations mandatory for the biochemical function of proteins. A rapid loss of CO2 from Europa's atmosphere may have led to freezing oceans. Alkaline brine bubbles embedded in ice in freezing and impact-thawing oceans could have provided a suitable environment for protocell formation and the large number of trials needed for biogenesis. Understanding these processes could be central to assessing the probability of life on Europa.