Abstract
The pair-production absorption of high-energy gamma-rays by intergalactic low-energy photons is expected to produce a high-energy cutoff in the spectra of extragalactic sources which is a sensitive function of redshift. We first discuss the expected absorption coefficient as a function of energy and redshift derived by Stecker and De Jager by making use of a new empirically based calculation of the spectral energy distribution of the intergalactic infrared radiation field as given by Malkan and Stecker. We then discuss the fact that new data on the high energy gamma-ray source Mrk 501 appear to show the amount of intergalactic absorption predicted. The implications of this new HEGRA data, should they be confirmed, are significant for the astrophysics of this source, implying that (1) there is no significant intrinsic absorption inside the source, and (2) the physics of the emission produces a power-law spectrum to energies above 20 TeV. As a further test for intergalactic absorption, we give a predicted spectrum, with absorption included, for PKS 2155-304. This XBL lies at a redshift of 0.12, the highest redshift source yet observed at an energy above 0.3 TeV. We also discuss the determination of the gamma-ray opacity of the universe at higher redshifts (out to $z=3$), following the treatment of Salamon and Stecker.

This publication has 0 references indexed in Scilit: