Abstract
The effects of strain and number of quantum wells on optical gain, differential gain, and nonlinear gain coefficient in 1.55- mu m InGaAs/InGaAsP strained-quantum-well lasers are theoretically investigated. Well-approximated empirical expressions are proposed to model these effects. Using these formulas, one can easily and accurately predict the performance of a laser diode for a given structure. Therefore, these empirical formulas are useful tools for design and optimization of strained quantum well lasers. As a general design guideline revealed from the empirical formulas, the threshold current is reduced with the compressive strain, and the modulation bandwidth is most efficiently increased with the number of wells.<>