Baryon magnetic moments and sigma terms in lattice-regularized chiral perturbation theory

Abstract
An SU(3) chiral Lagrangian for the lightest decuplet of baryons is constructed on a discrete lattice of spacetime points, and is added to an existing lattice Lagrangian for the lightest octets of mesons and baryons. A nonzero lattice spacing renders all loop integrations finite, and the continuum limit of any physical observable is identical to the result obtained from dimensional regularization. Chiral symmetry and gauge invariance are preserved even at nonzero lattice spacing. Specific calculations discussed here include the non-renormalization of a conserved vector current, the magnetic moments of octet baryons, and the pi N and KN sigma terms that relate to the nucleon's strangeness content. The quantitative difference between physics at a nonzero lattice spacing and physics in the continuum limit is easily computed, and it represents an expectation for the size of discretization errors in corresponding lattice QCD simulations.Comment: 19 pages, 5 figures, one paragraph added to introduction, to appear in Phys Rev

This publication has 13 references indexed in Scilit: