Relationship between nuclear remodeling and subsequent development of mouse embryonic nuclei transferred to enucleated oocytes

Abstract
The present study was conducted to examine the relationship between nuclear remodeling and subsequent embryonic development in nuclear transplant mouse embryos. Metaphase II oocytes were enucleated without staining and fused with transferred donor nuclei from two-, four-, or eight-cell embryos. Fusion and oocyte activation were performed by means of electric fields. High rates of enucleation (89.1%), fusion (88.0–91.6%), and activation (95.2–96.9%) were obtained using this system. Nuclear remodeling was characterized by premature chromosome condensation (PCC), followed by various pronuclear-like formations upon oocyte activation. Development to blastocysts was obtained from both PCC (17.9%) and non-PCC (NPCC; 52.9%) embryos fused with the two-cell nuclei. However, development to term was obtained only in PCC embryos with a single pronucleus-like structure and a polar body (12.5%). In vitro development of nuclear transplant embryos with four- and eight-cell nuclei was limited. All the NPCC embryos examined had tetraploid chromosome constitutions, but chromosome constitutions of PCC embryos varied. Only 37.5% of the PCC embryos had diploid chromosome constitutions. The results indicated that the development of nuclear transplant embryos is affected by the types of nuclear remodeling and that oocyte activation in relation to their chromosome constitutions. The results also indicated that the PCC of the donor nucleus in nonactivated cytoplasm is important for the development of the nuclear transplant embryos.