Thermochemical Stability of α-Amino-α-carbonylmethyl Radicals and Their Resonance As Measured by ESR
- 1 February 1997
- journal article
- research article
- Published by American Chemical Society (ACS) in The Journal of Organic Chemistry
- Vol. 62 (3) , 552-558
- https://doi.org/10.1021/jo961703v
Abstract
ESR spectra of the captodative α-amino-α-carbonylmethyl radicals 8 have been recorded. No coalescence temperature for the rotation of the two NMe groups was found at temperatures below the decomposition temperature of the radicals. From known coalescence temperatures and rotational barriers of substituted methyl radicals the rotational barrier of ≥17 kcal mol-1 was estimated for the •C−N bond in the radicals 8. Enthalpies ΔHdiss and entropies ΔSdiss of the homolytic dissociation of 7a,c,d into 8a,c,d have been obtained from equilibrium measurements by ESR. By correcting for substituent interaction enthalpies in 7 (steric and geminal), a radical stabilization enthalpy RSE = −20.7 ± 1.0 kcal mol-1 was obtained for 8. By addition of the known RSEs of dialkylamino- and carbonyl groups, a RSE = −9.9 kcal mol-1 is predicted for 8. The difference between the experimental and predicted values of 10.8 kcal mol-1 is attributed to a synergistic captodative substituent effect. A linear correlation between the radical stabilization enthalpies of the radicals 8 and of other mono- and disubstituted alkyl radicals and their ESR aHα coupling constants was found. According to this correlation the reduction of aHα by 1 G corresponds to an increase in RSE of 1.57 kcal mol-1. The large resonance of the captodative α-amino-α-carbonylmethyl radicals 3, expressed by their high RSE, their small aHα coupling constant, and their high rotational barrier, can be rationalized by a strong interaction between the α-amino and the α-carbonyl groups similar to that in amides and expressed in the resonance structures 6.Keywords
This publication has 19 references indexed in Scilit:
- Thermische Stabilität von 9,9′‐Bixanthen und 9,9′,10,10′‐Tetrahydro‐ 10,10,10′,10′‐tetramethyl‐9,9′‐bianthracen Stabilisierungsenergie planarer Benzhydryl‐Radikale[2]European Journal of Inorganic Chemistry, 1994
- Substituenteneffekte auf die C-C‐Bindungsstärke, 14. Kinetische und thermodynamische Stabilität von 2,3‐Bis(dialkylamino)‐1,4‐diketonen — Stabilisierungsenergie capto‐dativ substituierter a‐Dialkylamino‐a‐Carbonylalkyl‐RadikaleEuropean Journal of Inorganic Chemistry, 1994
- Substituenteneffekte auf die C-C‐Bindungsstärke, 13. Kinetische und thermodynamische Stabilität von α1‐alkylierten α1‐Amino‐carbonsäureestern – Stabilisierungsenergie von α1‐Amino‐α1‐(ethoxycarbonyl)alkyl‐RadikalenEuropean Journal of Inorganic Chemistry, 1993
- Substituenteneffekte auf die C-C‐Bindungsstärke. IX. Thermolabilität der 2,3‐Di(N,N‐dialkylamino)‐bernsteinsäure‐diethylesterJournal für Praktische Chemie, 1990
- Stabilities of substituted benzyl radicals: dissociation rates of amino-, hydroxy-, and cyanoethylbenzenesThe Journal of Physical Chemistry, 1989
- L'Évaluation Semi‐Empirique des Densités de Spin π dans les Radicaux CarbonesBulletin des Sociétés Chimiques Belges, 1988
- Substituenteneffekte auf die CC‐Bindungsstärke, 5. Kinetik und Thermochemie der homolytischen Dissoziation von meso ‐ und D , L ‐2,3‐Dimethoxy‐2,3‐diphenylbernsteinsäuredinitrilEuropean Journal of Inorganic Chemistry, 1983
- Thermolabile Kohlenwasserstoffe, XVI. Thermische Stabilität, Spannungsenthalpie und Struktur symmetrisch tetrasubstituierter EthaneEuropean Journal of Inorganic Chemistry, 1982
- Radical mechanism of alkylation of sodium naphthalenideJournal of the American Chemical Society, 1968
- Solvent Effects in Cationic Polymerization and CopolymerizationJournal of the American Chemical Society, 1963