Spin-based all-optical quantum computation with quantum dots: understanding and suppressing decoherence
Preprint
- 4 April 2003
Abstract
We present an all-optical implementation of quantum computation using semiconductor quantum dots. Quantum memory is represented by the spin of an excess electron stored in each dot. Two-qubit gates are realized by switching on trion-trion interactions between different dots. State selectivity is achieved via conditional laser excitation exploiting Pauli exclusion principle. Read-out is performed via a quantum-jump technique. We analyze the effect on our scheme's performance of the main imperfections present in real quantum dots: exciton decay, hole mixing and phonon decoherence. We introduce an adiabatic gate procedure that allows one to circumvent these effects, and evaluate quantitatively its fidelity.Keywords
All Related Versions
- Version 1, 2003-04-04, ArXiv
- Published version: Physical Review A, 68 (1), 012310.