Ab initiomodeling of quantum transport properties of molecular electronic devices
Top Cited Papers
Open Access
- 1 June 2001
- journal article
- research article
- Published by American Physical Society (APS) in Physical Review B
- Vol. 63 (24) , 245407
- https://doi.org/10.1103/physrevb.63.245407
Abstract
We report on a self-consistent ab initio technique for modeling quantum transport properties of atomic and molecular scale nanoelectronic devices under external bias potentials. The technique is based on density functional theory using norm conserving nonlocal pseudopotentials to define the atomic core and nonequilibrium Green’s functions (NEGF’s) to calculate the charge distribution. The modeling of an open device system is reduced to a calculation defined on a finite region of space using a screening approximation. The interaction between the device scattering region and the electrodes is accounted for by self-energies within the NEGF formalism. Our technique overcomes several difficulties of doing first principles modeling of open molecular quantum coherent conductors. We apply this technique to investigate single wall carbon nanotubes in contact with an Al metallic electrode. We have studied the current-voltage characteristics of the nanotube-metal interface from first principles. Our results suggest that there are two transmission eigenvectors contributing to the ballistic conductance of the interface, with a total conductance where is the conductance quanta. This is about half of the expected value for infinite perfect metallic nanotubes.
Keywords
This publication has 83 references indexed in Scilit:
- General Green’s-function formalism for transport calculations withHamiltonians and giant magnetoresistance in Co- and Ni-based magnetic multilayersPhysical Review B, 1999
- Structural and transport properties of aluminum atomic wiresPhysical Review B, 1998
- Capacitance of Atomic JunctionsPhysical Review Letters, 1998
- Multiprobe Transport Experiments on Individual Single-Wall Carbon NanotubesPhysical Review Letters, 1998
- Order-method for a nonorthogonal tight-binding HamiltonianPhysical Review B, 1998
- NanotubesCurrent Opinion in Solid State and Materials Science, 1997
- Conductance of a Molecular JunctionScience, 1997
- Quantized conductance of Si atomic wiresPhysical Review B, 1997
- Quantum transport through atomic wiresApplied Physics Letters, 1997
- Electrochemical-potential variations across a constrictionPhysical Review B, 1990