On the exact solutions of pseudorange equations
- 1 January 1994
- journal article
- Published by Institute of Electrical and Electronics Engineers (IEEE) in IEEE Transactions on Aerospace and Electronic Systems
- Vol. 30 (4) , 1021-1030
- https://doi.org/10.1109/7.328767
Abstract
Three formulations of exact solution algorithms to the system of determined pseudorange equations are derived. It is demonstrated that pseudorange equations are hyperbolic in nature and may have two solutions, even when the emitter configuration is nonsingular. Conditions for uniqueness and for the existence of multiple solutions are derived in terms of the Lorentz inner product. The bifurcation parameter for systems of pseudorange equations is also expressed in term of the Lorentz functional. The solution is expressed as a product of the geometric dilution of precision (GDOP) matrix, representing the linear part of the solution, and a vector of nonlinear term. Using this formulation stability of solutions is discussed.Keywords
This publication has 3 references indexed in Scilit:
- Existence and uniqueness of GPS solutionsIEEE Transactions on Aerospace and Electronic Systems, 1991
- An Algebraic Solution of the GPS EquationsIEEE Transactions on Aerospace and Electronic Systems, 1985
- New Algorithms for Converting LORAN Time Differences to PositionNAVIGATION: Journal of the Institute of Navigation, 1973