Comparison of diazotroph community structure in Lyngbya sp. and Microcoleus chthonoplastes dominated microbial mats from Guerrero Negro, Baja, Mexico
Open Access
- 1 March 2004
- journal article
- Published by Oxford University Press (OUP) in FEMS Microbiology Ecology
- Vol. 47 (3) , 305-308
- https://doi.org/10.1016/s0168-6496(03)00301-5
Abstract
The nitrogenase activity and phylogenetic diversity of nitrogen fixing microorganisms in several different cyanobacterial mat types from Guerrero Negro, Baja California, Mexico were investigated by acetylene reduction assay, and by amplification and sequencing of the nitrogenase nifH gene. Acetylene reduction assays performed on a Lyngbya sp. and two Microcoleus chthonoplastes dominated microbial mats showed a typical diel pattern of nitrogenase activity in these mats. The highest rates of activity were found at night, with 40 and 37 μmol C2H4 m−2 h−1 measured in the Microcoleus mats, and 9 μmol C2H4 m−2 h−1 in the Lyngbya mat. Nitrogenase sequences were obtained that clustered with sequences from cyanobacteria, γ-Proteobacteria, and cluster 3 of nifH. In addition, novel and divergent sequences were also recovered. The composition of nifH sequence types recovered differed between the Lyngbya and Microcoleus mats. Interestingly, nifH sequences belonging to filamentous cyanobacteria were absent in most mat samples even though both mats were dominated by filamentous cyanobacteria. nifH sequences clustering with those of unicellular cyanobacteria were found, some of which were virtually identical to the nifH sequence from Halothece sp. MPI96P605, which had previously been isolated from the mat. In manipulation experiments, the Lyngbya and Microcoleus mats were allowed to re-colonize a cleared surface. In these developing mats, nifH sequences not previously observed in the mats were discovered. Our results showed that organisms capable of N2 fixation were present in N2 fixing mats, that the composition of the N2 fixing communities differs between mats, and that filamentous cyanobacterial diazotrophs may not have a large role in the early stages of mat development.Keywords
This publication has 35 references indexed in Scilit:
- Diversity of Diazotrophic Unicellular Cyanobacteria in the Tropical North Atlantic OceanApplied and Environmental Microbiology, 2002
- Potential N2 fixation by sulfate-reducing bacteria in a marine intertidal microbial matAquatic Microbial Ecology, 2002
- Nitrogen Fixation by Symbiotic and Free-Living SpirochetesScience, 2001
- Nutrient Limitation to Nitrogen Fixation in Young Volcanic SitesEcosystems, 1999
- Consortial N2 fixation: a strategy for meeting nitrogen requirements of marine and terrestrial cyanobacterial matsFEMS Microbiology Ecology, 1996
- Physiological ecology of cyanobacteria in microbial mats and other communitiesNew Phytologist, 1995
- THE DIURNAL PATTERN OF DINITROGEN FIXATION BY CYANOBACTERIA IN SITUNew Phytologist, 1987
- Structure and development of a benthic marine microbial matFEMS Microbiology Letters, 1985
- Primary production of microalgae in sediments measured by oxygen microprofile, H14CO3 ‐ fixation, and oxygen exchange methods1Limnology and Oceanography, 1981
- Nitrogen Fixation by Sulphate-reducing BacteriaJournal of General Microbiology, 1970