Apple Proteins that Interact with DspA/E, a Pathogenicity Effector of Erwinia amylovora, the Fire Blight Pathogen
Open Access
- 1 January 2006
- journal article
- Published by Scientific Societies in Molecular Plant-Microbe Interactions®
- Vol. 19 (1) , 53-61
- https://doi.org/10.1094/mpmi-19-0053
Abstract
The disease-specific (dsp) gene dspA/E of Erwinia amylovora encodes an essential pathogenicity effector of 198 kDa, which is critical to the development of the devastating plant disease fire blight. A yeast two-hybrid assay and in vitro protein pull-down assay demonstrated that DspA/E interacts physically and specifically with four similar putative leucine-rich repeat (LRR) receptor-like serine/threonine kinases (RLK) from apple, an important host of E. amylovora. The genes encoding these four DspA/E-interacting proteins of Malus ×domestica (DIPM1 to 4) are conserved in all genera of hosts of E. amylovora tested. They also are conserved in all cultivars of apple tested that range in susceptibility to fire blight from highly susceptible to highly resistant. The four DIPMs have been characterized, and they are expressed constitutively in host plants. In silico analysis indicated that the DIPMs have similar sequence structure and resemble LRR RLKs from other organisms. Evidence is presented for direct physical interaction between DspA/E and the apple proteins encoded by the four identified clones, which may act as susceptibility factors and be essential to disease development. Knowledge of DIPMs and the interaction with DspA/E thus may facilitate understanding of fire blight development and lead to new approaches to control of disease.Keywords
This publication has 59 references indexed in Scilit:
- Arabidopsis RIN4 Is a Target of the Type III Virulence Effector AvrRpt2 and Modulates RPS2-Mediated ResistanceCell, 2003
- RIN4 Interacts with Pseudomonas syringae Type III Effector Molecules and Is Required for RPM1-Mediated Resistance in ArabidopsisCell, 2002
- Plant pathogens and integrated defence responses to infectionNature, 2001
- The Pseudomonas syringae avrRpt2 Gene Product Promotes Pathogen Virulence from Inside Plant CellsMolecular Plant-Microbe Interactions®, 2000
- FLS2: An LRR Receptor–like Kinase Involved in the Perception of the Bacterial Elicitor Flagellin in ArabidopsisPublished by Elsevier ,2000
- DspA, an essential pathogenicity factor of Erwinia amylovora showing homology with AvrE of Pseudomonas syringae, is secreted via the Hrp secretion pathway in a DspB‐dependent wayMolecular Microbiology, 1997
- Initiation of Plant Disease Resistance by Physical Interaction of AvrPto and Pto KinaseScience, 1996
- TheavrRpm1Gene ofPseudomonas syringaepv.maculicolaIs Required for Virulence on ArabidopsisMolecular Plant-Microbe Interactions®, 1995
- avrAandavrEinPseudomonas syringaepv.tomatoPT23 Play a Role in Virulence on Tomato PlantsMolecular Plant-Microbe Interactions®, 1994
- Differential Host × Pathogen Interactions Among Cultivars of Apple and Strains ofErwinia amylovoraPhytopathology®, 1984