Abstract
Carbon dioxide and water vapor exchange of tomato (Lycopersicon esculentum Mill. cv Rheinlands Ruhm) leaves were measured before and after 24 h of soil flooding to characterize both stomatal and nonstomatal responses to the stress. Leaf epidermal conductance to water vapor decreased by 47% after flooding, accompanied by an increase in the sensitivity of stomata to changes in CO2 concentration. Assimilation rates under ambient conditions fell by 27%, and the inhibition could not be overcome by elevated CO2 partial pressures. Stomatal conductance limited the assimilation rate to approximately the same degree both before and after flooding. The reduction in photosynthetic capacity was not due to a decrease in apparent quantum yield or to an increase in photorespiration. The results were analyzed according to a recent model of photosynthesis, and possible mechanisms underlying the flooding effect are discussed.