Abstract
Let g be the geodesic flow on the unit tangent bundle of a C3 compact surface of negative curvature. Let μ be the g-invariant measure of maximal entropy. Let h be a uniformly parametrized flow along the horocycle foliation, i.e., such a flow exists, leaves μ invariant, and is unique up to constant scaling of the parameter (Margulis). We show that any measure-theoretic conjugacy: (h, μ) → (h′, μ′) is a.e. of the form θ, where θ is a homeomorphic conjugacy: gg′. Furthermore, any homeomorphic conjugacy gg′; must be a C1 diffeomorphism.

This publication has 12 references indexed in Scilit: