BREAST CARCINOMAS SYNTHESIZE FACTORS WHICH INFLUENCE OSTEOBLAST-LIKE CELLS INDEPENDENTLY OF OSTEOCLASTS IN VITRO

Abstract
Bone metastases in breast cancer may be osteolytic, osteosclerotic, or a mixture of the two. Although stimulation of bone resorption by breast cancer cells has attracted some interest, the formation of osteosclerotic secondary tumours and the influence of human mammary carcinoma cells on osteoblasts (bone forming cells), both important in understanding breast cancer - bone interactions, have been largely neglected. We therefore examined the effects of conditioned medium (CM) from two cultured human breast cancer cell lines (MCF7 and ZR-75) and from primary cultures of breast carcinomas from two patients, on osteoblasts and recruitment of bone-resorbing cells (osteoclasts) in vitro. Osteoblast-like cells (BDC) were cultured from human trabecular bone explants. Osteoclast maturation was studied in fetal rat calvaria cultured on collagen gels. CM from the MCF-7 line and cells derived from one patient each inhibited BDC DNA synthesis, but stimulated osteoclast recruitment. In contrast, CM from the second patient's cells or ZR-75 enhanced DNA synthesis in BDC, but blocked osteoclast maturation. This suggests that human breast carcinomas secrete soluble factors which influence both osteoclasts and osteoblasts. A further unexpected implication is that mammary carcinoma cells may cause local osteosclerosis by directly stimulating osteoblasts, rather than through raised bone turnover in metastases.

This publication has 0 references indexed in Scilit: