The current status of species recognition and identification in Aspergillus
Top Cited Papers
Open Access
- 1 January 2007
- journal article
- Published by Westerdijk Fungal Biodiversity Institute in Studies in Mycology
- Vol. 59 (1) , 1-10
- https://doi.org/10.3114/sim.2007.59.01
Abstract
The species recognition and identification of aspergilli and their teleomorphs is discussed. A historical overview of the taxonomic concepts starting with the monograph of Raper & Fennell (1965) is given. A list of taxa described since 2000 is provided. Physiological characters, particularly growth rates and the production of extrolites, often show differences that reflect phylogenetic species boundaries and greater emphasis should be placed on extrolite profiles and growth characteristics in species descriptions. Multilocus sequence-based phylogenetic analyses have emerged as the primary tool for inferring phylogenetic species boundaries and relationships within subgenera and sections. A four locus DNA sequence study covering all major lineages in Aspergillus using genealogical concordance theory resulted in a species recognition system that agrees in part with phenotypic studies and reveals the presence of many undescribed species not resolved by phenotype. The use of as much data from as many sources as possible in making taxonomic decisions is advocated. For species identification, DNA barcoding uses a short genetic marker in an organism”s DNA to quickly and easily identify it to a particular species. Partial cytochrome oxidase subunit 1 sequences, which are used for barcoding animal species, were found to have limited value for species identification among black aspergilli. The various possibilities are discussed and at present partial β-tubulin or calmodulin are the most promising loci for Aspergillus identification. For characterising Aspergillus species one application would be to produce a multilocus phylogeny, with the goal of having a firm understanding of the evolutionary relationships among species across the entire genus. DNA chip technologies are discussed as possibilities for an accurate multilocus barcoding tool for the genus Aspergillus.Keywords
This publication has 107 references indexed in Scilit:
- New taxa of Neosartorya and Aspergillus in Aspergillus section FumigatiAntonie van Leeuwenhoek, 2007
- DNA Sequence Characterization and Molecular Evolution of MAT1 and MAT2 Mating-Type Loci of the Self-Compatible Ascomycete Mold Neosartorya fischeriEukaryotic Cell, 2007
- DNA barcoding cannot reliably identify species of the blowfly genusProtocalliphora(Diptera: Calliphoridae)Proceedings Of The Royal Society B-Biological Sciences, 2007
- Prospects for fungus identification usingCO1DNA barcodes, withPenicilliumas a test caseProceedings of the National Academy of Sciences, 2007
- Assessing the effect of varying sequence length on DNA barcoding of fungiMolecular Ecology Notes, 2007
- Does the DNA barcoding gap exist? – a case study in blue butterflies (Lepidoptera: Lycaenidae)Frontiers in Zoology, 2007
- Eukaryotic microbes, species recognition and the geographic limits of species: examples from the kingdom FungiPhilosophical Transactions Of The Royal Society B-Biological Sciences, 2006
- Molecular Identification of Black-Grain Mycetoma AgentsJournal of Clinical Microbiology, 2006
- Identification of Birds through DNA BarcodesPLoS Biology, 2004
- A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequencesJournal of Molecular Evolution, 1980