Slowdowns in Diversification Rates from Real Phylogenies May Not be Real
Open Access
- 3 June 2010
- journal article
- research article
- Published by Oxford University Press (OUP) in Systematic Biology
- Vol. 59 (4) , 458-464
- https://doi.org/10.1093/sysbio/syq032
Abstract
Studies of diversification patterns often find a slowing in lineage accumulation toward the present. This seemingly pervasive pattern of rate downturns has been taken as evidence for adaptive radiations, density-dependent regulation, and metacommunity species interactions. The significance of rate downturns is evaluated with statistical tests (the γ statistic and Monte Carlo constant rates (MCCR) test; birth–death likelihood models and Akaike Information Criterion [AIC] scores) that rely on null distributions, which assume that the included species are a random sample of the entire clade. Sampling in real phylogenies, however, often is nonrandom because systematists try to include early-diverging species or representatives of previous intrataxon classifications. We studied the effects of biased sampling, structured sampling, and random sampling by experimentally pruning simulated trees (60 and 150 species) as well as a completely sampled empirical tree (58 species) and then applying the γ statistic/MCCR test and birth–death likelihood models/AIC scores to assess rate changes. For trees with random species sampling, the true model (i.e., the one fitting the complete phylogenies) could be inferred in most cases. Oversampling deep nodes, however, strongly biases inferences toward downturns, with simulations of structured and biased sampling suggesting that this occurs when sampling percentages drop below 80%. The magnitude of the effect and the sensitivity of diversification rate models is such that a useful rule of thumb may be not to infer rate downturns from real trees unless they have >80% species sampling.Keywords
This publication has 33 references indexed in Scilit:
- Contrasted patterns of hyperdiversification in Mediterranean hotspotsProceedings of the National Academy of Sciences, 2009
- Plant species radiations: where, when, why?Philosophical Transactions Of The Royal Society B-Biological Sciences, 2008
- Diversification of myco-heterotrophic angiosperms: evidence from BurmanniaceaeBMC Ecology and Evolution, 2008
- Pattern and timing of diversification in Yucca (Agavaceae): specialized pollination does not escalate rates of diversificationProceedings Of The Royal Society B-Biological Sciences, 2007
- Tropical forests are both evolutionary cradles and museums of leaf beetle diversityProceedings of the National Academy of Sciences, 2006
- Island radiation on a continental scale: Exceptional rates of plant diversification after uplift of the AndesProceedings of the National Academy of Sciences, 2006
- Timing and rate of speciation inAgave(Agavaceae)Proceedings of the National Academy of Sciences, 2006
- THE DIVERSIFICATION OF HALENIA (GENTIANACEAE): ECOLOGICAL OPPORTUNITY VERSUS KEY INNOVATIONEvolution, 2003
- The phylogeny of (Gentianaceae) and its colonization of the southern hemisphere as revealed by nuclear and chloroplast DNA sequence variationOrganisms Diversity & Evolution, 2001
- The Imprint of History on Communities of North American and Asian WarblersThe American Naturalist, 2000