Transit-Time and Tracer-Age Distributions in Geophysical Flows

Abstract
Transport in the atmosphere and in the ocean is the result of the complex action of time-dependent and often highly turbulent flow. A useful diagnostic that summarizes the rate at which fluid elements are transported from some region to a point (or the reverse) via a multiplicity of pathways and mechanisms is the probability density function (pdf) of transit times. The first moment of this pdf, often referred to as “mean age,” has become an important transport diagnostic commonly used by the observational community. This paper explores how to probe the flow with passive tracers to extract transit-time pdf’s. As a foundation, the literal “tracer age” is defined as the elapsed time since tracer was injected into the flow, and the corresponding tracer-age distribution, Z, as the fractional tracer mass in a given interval of tracer age. The distribution, Z, has concrete physical interpretation for arbitrary sources, but is only equivalent to a tracer-independent transit-time pdf of the flow in specia... Abstract Transport in the atmosphere and in the ocean is the result of the complex action of time-dependent and often highly turbulent flow. A useful diagnostic that summarizes the rate at which fluid elements are transported from some region to a point (or the reverse) via a multiplicity of pathways and mechanisms is the probability density function (pdf) of transit times. The first moment of this pdf, often referred to as “mean age,” has become an important transport diagnostic commonly used by the observational community. This paper explores how to probe the flow with passive tracers to extract transit-time pdf’s. As a foundation, the literal “tracer age” is defined as the elapsed time since tracer was injected into the flow, and the corresponding tracer-age distribution, Z, as the fractional tracer mass in a given interval of tracer age. The distribution, Z, has concrete physical interpretation for arbitrary sources, but is only equivalent to a tracer-independent transit-time pdf of the flow in specia...

This publication has 0 references indexed in Scilit: