Identification of mRNA that encodes an alternative form of H-CAM(CD44) in lymphoid and nonlymphoid tissues

Abstract
The cluster of differentiation 44 (CD44), hereafter referred to as H-CAM(CD44), represents a novel class of polymorphic (M r 80 000–215 000) cell adhesion molecules that are involved in cell-cell and cell-matrix adhesion events in a variety of organ systems. We report the detection of distinct mRNAs, in both hematopoietic and nonhematopoietic human cell lines, that encode H-CAM(CD44) with different cytoplasmic domains. Genomic Southern blot analyses indicate that the exons encoding these two cytoplasmic domains are located on the same ∼ 16 kilobase (kb) Eco RI restriction fragment. Restriction endonuclease and Southern blot analyses performed on polymerase chain reaction (PCR) amplification copies of these mRNAs confirm that their sequences correspond with previously reported cDNA sequences. A consensus splice donor site which is conserved in human, baboon, and mouse mRNAs that encode a molecule with an elongated cytoplasmic domain (H-CAM-L) is utilized to generate a distinct but low-abundance mRNA species that encodes H-CAM(CD44) with a truncated cytoplasmic domain of only three amino acids (H-CAM-S). Estimations of the relative abundance of these mRNA species in B-lymphoblastoid cells using the PCR amplification technique exhibit average H-CAM-L/H-CAM-S ratios ranging between 100 and 200. Therefore, H-CAM(CD44)-mediated adhesive events may be regulated through a differential capacity of H-CAM-L and H-CAM-S to interact with the cytoskeleton and to participate in intracellular signaling events.