Role of Ca2+ activation and bilobal structure of calmodulin in nuclear and nucleolar localization

Abstract
Ca2+ signalling to the nucleus is thought to occur by calmodulin entry into the nucleus where calmodulin has many functions. In the present study we have investigated the role of Ca2+ and the N- and C-terminal lobes of calmodulin in its subnuclear targeting by using fluorescently labelled calmodulin and its mutants and confocal microscopy. Our data show, first, that Ca2+ stimulation induces a reorganization of subnuclear structures to which apo-calmodulin can bind. Secondly, Ca2+-independent association of the C-terminal lobe is seen with subnuclear structures such as chromatin, the nuclear envelope and the nucleoli. Thirdly, Ca2+-dependent accumulation of both calmodulin and the C-terminal calmodulin lobe occurs in the nucleoli. The N-terminal lobe of calmodulin does not show significant binding to subnuclear structures although, similarly to the C-terminal lobe, it accumulates in the nucleoplasm of wheat germ agglutinin-blocked nuclei suggesting that a facilitated nuclear export mechanism exists for calmodulin.
Keywords