Abstract
The vector autoregressive moving average model is a multivariate stationary stochastic process where the unobservable multivariate process consists of independently identically distributed random vectors. The coefficient matrices and the covariance matrix are to be estimated from an observed sequence. Under the assumption of normality the method of maximum likelihood is applied to likelihoods suitably modified for techniques in the frequency and time domains. Newton-Raphson and scoring iterative methods are presented.

This publication has 0 references indexed in Scilit: