Mixed Approach to Incorporate Self-Consistency into Order-N LCAO Methods

Abstract
We present a method for selfconsistent Density Functional Theory calculations in which the effort required is proportional to the size of the system, thus allowing the aplication to problems with a very large size. The method is based on the LCAO approximation, and uses a mixed approach to obtain the Hamiltonian integrals between atomic orbitals with Order-N effort. We show the performance and the convergence properties of the method in several silicon and carbon systems, and in a DNA periodic chain.