Abstract
The bile ducts in the liver of larval sea lamprey, Petromyzon marinus, undergo programmed degeneration during metamorphosis. The degenerative process is most dramatic in the middle metamorphic stages (3–5), and is asynchronous, occurring more rapidly in small peripheral biliary components than in larger, medial ducts. All classes of bile ducts within the biliary tree exhibit similar histological changes during regression. The initial evidence of degeneration in the epithelium is a folding of the basal lamina, and this is accompanied by cell shrinkage and disruption of cell order. “Shedding” of microvilli and cytoplasmic constituents then takes place at the apical surface resulting in the accumulation of periodic acid-Schiff positive membranous debris in the lumen. The apperance of “hyalin bodies” in the lumen coincides with the depletion of intermediate-sized filaments from the cytoplasmic matrix. Numerous, large dense bodies, myelin figures, and autophagic vacuoles are consistently observed in necrotic cells. Following cytolysis, bile duct remnants become ensheathed within regions of fibrosis. Ultimately, these fibrous regions are replaced with cords of hepatocytes. By stage 7, all bile ducts have disappeared. The events of biliary atresia in lampreys are comparable to tissue regression which is associated with normal development and pathological conditions in other vertebrates but are particularly reminiscent of those in human biliary atresia. The unique ability of the adult lamprey to survive without bile ducts enhances the value of this organism as an experimental model for studying human biliary atresia.