The Ratio Between Projected Area Diameter and Equivalent Diameter of Particulates in Pittsburgh Air

Abstract
A horizontal elutriator was designed, fabricated, and calibrated with clouds of spherical polyvinyltoluene latex and styrene divinylbenzene particles. It was used to sample Pittsburgh air and deposit particles from 2.0 to 16 microns equivalent diameter on glass slides. By assuming a parabolic velocity profile between plates approaching infinite width, a theory of deposition was developed which agreed well with experimentally determined particle deposits. We measured deposited particle projected area diameter with a calibrated microscope reticle. The ratio between particle projected area diameter (d p) and equivalent diameter (d e) varied from 0.5 to 2.8 for almost all particles, but was as high as 6.5 in extraordinary cases. Stress is placed on the need for specifying d p or d e based on the applications of sizing data.

This publication has 7 references indexed in Scilit: