Ram Pressure Stripping of Spiral Galaxies in Clusters
Abstract
We use 3-dimensional SPH/N-BODY simulations to study ram pressure stripping of gas from spiral galaxies orbiting in clusters. We find that the analytic expectation of Gunn & Gott (1972) relating the gravitational restoring force provided by the disk to the ram pressure force, provides a good approximation to the radius that gas will be stripped from a galaxy. However, at small radii it is also important to consider the potential provided by the bulge component. A spiral galaxy passing through the core of a rich cluster such as Coma, will have its gaseous disk truncated to $\sim 4$ kpc, thus losing $\sim 80%$ of its diffuse gas mass. The timescale for this to occur is a fraction of a crossing time $\sim 10^7$ years. Galaxies orbiting within poorer clusters, or inclined to the direction of motion through the intra-cluster medium will lose significantly less gas. We conclude that ram-pressure alone is insufficient to account for the rapid and widespread truncation of star-formation observed in cluster galaxies, or the morphological transformation of Sab's to S0's that is necessary to explain the Butcher-Oemler effect.
Keywords
All Related Versions
This publication has 0 references indexed in Scilit: