Phase Matching of High-Order Harmonics in Hollow Waveguides

Abstract
We investigate the case of phase-matched high-harmonic generation in a gas-filled capillary waveguide, comparing in detail theory with experiment. We observe three different regimes of phase matching: one where atomic dispersion balances waveguide dispersion, another corresponding to non-collinear Cerenkov phase-matching, and a third where atomic dispersion and plasma dispersion balance. The role of atomic dispersion is demonstrated by studying the dependence of the harmonic signal for several gases. We also predict and provide preliminary evidence of a regime where phase-matching occurs only at specific fractional ionization levels, leading to an output signal that is sensitive to the absolute phase of the carrier wave.

This publication has 0 references indexed in Scilit: