The ultrastructure of defective human platelets

Abstract
Much of our current knowledge about the physiology of hemostasis has come from intensive study of platelets from patients with inherited and acquired bleeding disorders or an increased risk of thrombotic disease. Appreciation of the role of plasma proteins in platelet stickiness, of platelet surface membrane glycoproteins in aggregation, of the substances stored in platelet organelles in cell-cell interaction, vascular injury and atherosclerosis, and of endoperoxides and thromboxanes in platelet intercellular communication have resulted largely from investigations on various types of defective platelets. While the techniques of physiology and biochemistry have generated critical details about abnormal platelets, electron microscopy and ultrastructural cytochemistry have provided an improved morphological framework in which to integrate the new discoveries. The present review has attempted to correlate physiological, biochemical and ultrastructural concepts as they relate to the current understanding of inherited platelet disorders.