On the Theory of Biorthogonal Polynomials
- 1 April 1988
- journal article
- Published by JSTOR in Transactions of the American Mathematical Society
- Vol. 306 (2) , 455-474
- https://doi.org/10.2307/2000806
Abstract
Let <!-- MATH $\varphi (x,\,\mu )$ --> be a distribution in <!-- MATH $x \in {\mathbf{R}}$ --> for every in a real parameter set . Subject to additional technical conditions, we study th degree monic polynomials that satisfy the biorthogonality conditions <!-- MATH \begin{displaymath} \int_{ - \infty }^\infty {{p_m}(x)\,d\varphi (x,{\mu _l}) = 0,} \qquad l = 1,\,2, \ldots ,\,m,\;m \geqslant 1 \end{displaymath} -->
Keywords
This publication has 7 references indexed in Scilit:
- Two-Step Methods and Bi-OrthogonalityMathematics of Computation, 1987
- Bi-orthogonality in rational approximationJournal of Computational and Applied Mathematics, 1987
- Bi-orthogonality and zeros of transformed polynomialsJournal of Computational and Applied Mathematics, 1987
- Approximation theory and methods, by M. J. D. Powell. Pp 339. £25 (hardcover), £8·50 (paperback). 1981. ISBN 0-521-22472-1/29514-9 (Cambridge University Press)The Mathematical Gazette, 1984
- Padé-Type Approximation and General Orthogonal PolynomialsPublished by Springer Nature ,1980
- A Collection of Matrices for Testing Computational AlgorithmsMathematics of Computation, 1971
- Measure Theory. By Paul R. Halmos. Pp. vii, 304. $5.90 (45s.). (Macmillan, London; D. van Nostrand, New York)The Mathematical Gazette, 1951