Optimal control of the chemotherapy of HIV

Abstract
Using an existing ordinary differential equation model which describes the interaction of the immune system with the human immunodeficiency virus (HIV), we introduce chemotherapy in an early treatment setting through a dynamic treatment and then solve for an optimal chemotherapy strategy. The control represents the percentage of effect the chemotherapy has on the viral production. Using an objective function based on a combination of maximizing benefit based on T cell counts and minimizing the systemic cost of chemotherapy (based on high drug dose/strength), we solve for the optimal control in the optimality system composed of four ordinary differential equations and four adjoint ordinary differential equations.

This publication has 0 references indexed in Scilit: