Glutamine from Glial Cells Is Essential for the Maintenance of the Nerve Terminal Pool of Glutamate: Immunogold Evidence from Hippocampal Slice Cultures
- 1 August 1995
- journal article
- Published by Wiley in Journal of Neurochemistry
- Vol. 65 (2) , 871-881
- https://doi.org/10.1046/j.1471-4159.1995.65020871.x
Abstract
The immunogold labeling for glutamate and glutamine was studied at the electron microscopic level in hippocampal slice cultures following inhibition of L-glutamine synthetase [L-glutamate:ammonia ligase (ADP-forming); EC 6.3.1.2]. In control cultures, glutamate-like immunoreactivity was highest in terminals, intermediate in pyramidal cell bodies, and low in glial cells. Glutamine-like immunoreactivity was high in glial cells, intermediate in pyramidal cell bodies, and low in terminals. After inhibition of glutamine synthetase with L-methionine sulfoximine, glutamate-like immunoreactivity was reduced by 52% in terminals and increased nearly four-fold in glia. Glutamine-like immunoreactivity was reduced by 66% in glia following L-methionine sulfoximine, but changed little in other compartments. In cultures that were treated with both L-methionine sulfoximine and glutamine (1.0 mM), glutamate-like immunoreactivity was maintained at control levels in terminals, whereas in glia glutamate-like immunoreactivity was increased and glutamine-like immunoreactivity was decreased to a similar extent as in cultures treated with L-methionine sulfoximine alone. We conclude that (a) glutamate accumulates in glia when the flux through glutamine synthetase is blocked, emphasizing the importance of this pathway for the handling of glutamate; and (b) glutamine is necessary for the maintenance of a normal level of glutamate in terminals, and neither reuptake nor de novo synthesis through pathways other than the glutaminase reaction is sufficient.Keywords
This publication has 0 references indexed in Scilit: