The optical properties of metals

Abstract
Three main stages may be marked in the development of the theory of the optical properties of metals. First, there is Drude's original theory, based on Maxwell's equations; in this theory the current density j at any point in a metal is supposed to be equal to the product of the electric vector of the light and of the conductivity of the metal. The theory yields the well-known Hagen-Rubens formula for the reflecting power, which appears to be in agreement with experiment for very long wave-lengths (λ > 10μ), but leads to completely incorrect results in the optical region. Various investigators ‡ have therefore modified the theory to take account of the finite mass of the electron; the formulae obtained pass over into the Drude formulae for sufficiently long wave-lengths. Finally a quantum theory of the phenomenon has been given by Kronig§, the electrons being treated as moving in a periodic field due to the crystal lattice in the manner originated by Bloch; this theory, in its turn, becomes identical with the modified classical theory if the periodic lattice is neglected.

This publication has 21 references indexed in Scilit: