Spin Trapping Isotopically-Labelled Nitric Oxide Produced from [15n]L-Arginine and [17ojdioxygen by Activated Macrophages Using a Water Soluble Fe++-Dithiocarbamate Spin Trap

Abstract
The unique capabilities of EPR spin trapping of nitric oxide based on a ferrous-dithiocarbamate spin trap have been demonstrated in a study verifying the source of the nitrogen and oxygen atoms in nitric oxide produced from activated macrophages. Spin trapping experiments were performed during nitric oxide generation from activated mouse peritoneal macrophages using the ferrous complex of N-methyl D-glucam-ine dithiocarbamate as a spin trap. When 15N-substituted arginine was given to the activated macrophages in the presence of the spin trap, a characteristic EPR spectrum of the nitric oxide spin adduct was obtained, which indicates the presence of the l5N atom in the nitric oxide molecule. The hyperfine splitting (hfs) constant of the l5N nucleus was 17.6 gauss. When l7O-containing dioxygen (55%) was supplied to the medium, an EPR spectrum consistent with the “O-substituted nitric oxide spin adduct was observed in the composite spectrum. The hfs of “O was estimated to be 2.5 gauss. The l4NO spin adduct observed after prolonged incubation in the medium which contains [l5N]L-arginine as the only extracellular source of arginine demonstrates that arginine is recycled through its metabolite in activated macrophages.