Luminescence in europium-doped titania: Part II. High concentration range of Eu3+
- 1 October 2002
- journal article
- Published by Springer Nature in Journal of Materials Research
- Vol. 17 (10) , 2524-2531
- https://doi.org/10.1557/jmr.2002.0367
Abstract
In continuation of our previous work [J. Ovenstone, P.J. Titler, R. Withnall and J. Silver, J. Phys. Chem. B, 105, 7170 (2001)] we report the following results. Amorphous europium-doped titania phosphors (Ti1−3xEu4xO2) were prepared with europium concentrations from x = 0.000397 to x = 0.143. From investigations using photoluminescence (PL), it was deduced that the luminescence was due to a europium/titanium compound rather than from a europium-containing precipitate dispersed within a titania precipitate. PL brightness was shown to increase linearly to a concentration of x = 0.0159 before quenching began, and the rate of increase of brightness dropped. Brightness then continued to rise (almost linearly) from x = 0.0238 to x = 0.143. Under electron beam excitation these phosphors showed weak cathodoluminescence; for the amorphous materials no quenching was observed. For the crystalline materials (prepared by annealing the amorphous materials at high temperature) no red luminescence was observed above a concentration of x = 0.00318; however, some faint red luminescence was observed below this concentration. In addition, some faint blue emission was observed in crystalline samples that had no red luminescence, indicating the presence of small amounts of Eu2+ ions. This was attributed to reduction of the Eu3+ ions in the electron beam. Europium doping was shown to increase the size of the band gap in the amorphous materials, but had little effect on the band gap of the crystalline powders.Keywords
This publication has 3 references indexed in Scilit:
- A Study of the Effects of Europium Doping and Calcination on the Luminescence of Titania Phosphor MaterialsThe Journal of Physical Chemistry B, 2001
- Preparation of novel titania photocatalysts with high activityJournal of Materials Science, 2001
- Effect of the preparation method on the band gap of titania and platinum-titania sol-gel materialsMaterials Letters, 1995