Abstract
Soft magnetic material has been produced in which flaky thin amorphous metal particles, about 2 /spl mu/m thick, are aligned in polymer in the direction perpendicular to electromagnetic wave propagation. This material yields a permeability two to three times higher than the spinel-type ferrite system in the quasi-microwave band. We have designed a thin wave absorber composed of the present material by introducing a low-permittivity area such as a free space into the present metal-containing material. This decreases the average permittivity, striking a balance between complex permeability and permittivity values, and thus reducing the reflection coefficient of the absorber. A thin (about 3-mm thick) wave absorber with a reflection loss of over 30 dB in the quasi-microwave band was successfully obtained when the free space region was 5% of the total volume.

This publication has 4 references indexed in Scilit: