Numerical solutions of the lamm equation. VI. Effects of hydrostatic pressure on velocity sedimentation of two‐component systems
- 1 December 1970
- journal article
- research article
- Published by Wiley in Journal of Polymer Science Part A-2: Polymer Physics
- Vol. 8 (12) , 2163-2175
- https://doi.org/10.1002/pol.1970.160081212
Abstract
We present the results of accurate numerical solutions to the Lamm equation, including the effects of hydrostatic pressure, in order to check methods for the estimation of parameters based on a diffusionless theory. Some estimates of boundary spreading due to diffusion are given. The results indicate that parameter estimates based on the position of the maximum concentration gradient lead to fairly accurate results.Keywords
This publication has 16 references indexed in Scilit:
- Diffusional boundary spreading in the ultracentrifugeBiopolymers, 1970
- NUMERICAL SOLUTIONS OF THE LAMM EQUATION. V. BAND CENTRIFUGATION*Annals of the New York Academy of Sciences, 1969
- Numerical solutions of the Lamm equation. III. Velocity centrifugationBiopolymers, 1967
- Numerical solutions of the Lamm equation. I. Numerical procedureBiopolymers, 1966
- An approximate ‘steady state’ condition in the ultracentrifugeProceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1964
- Molecular weight distribution by velocity ultracentrifugationJournal of Polymer Science, 1962
- Effects of hydrostatic pressure on boundary spreading in sedimentation velocity experimentsJournal of Polymer Science, 1962
- THE EFFECT OF PRESSURE ON SEDIMENTATION RATEJournal of the American Chemical Society, 1959
- Correction des constantes de sédimentation pour la pression hydrostatiqueBulletin des Sociétés Chimiques Belges, 1954
- Über den Einfluss des hydrostatischen Druckes auf die Sedimentationsgeschwindigkeit in der UltrazentrifugeHelvetica Chimica Acta, 1944