Hair cell differentiation in the developing chick cochlea and in embryonic Cochlear organ culture

Abstract
We have defined a method for growing chick embryonic cochleae in organ culture that preserves many aspects of hair cell differentiation. Cochlear ducts were isolated from embryonic day 8 chicks, placed in organ culture, and incubated for 48 hours (to a point equivalent to embryonic day 10). The cultured ducts were then fixed and processed for scanning electron microscopy. As controls, cochlear ducts at embryonic days 8 and 10 were dissected and immediately fixed and processed for scanning electron microscopy. We chose this period to culture cochleae because at the corresponding time in vivo hair cells undergo a dynamic phase of differentation. During this time, the number of stereocilia in the stereociliary bundle increases, and two to three rows of stereocilia nearest the kinocilium elongate, initiating the staircase pattern of the bundle. Also, the orientation of many hair cells shifts from nonpolarized at embryonic day 8 to polarized toward the inferior edge cf the basilar papilla at embryonic day 10. Many of these aspects of hair cell differentiation proceed normally in organ culture. The appropriate distal‐to‐proximal gradients of hair cell density, apical surface area, and stereociliary number are preserved. Elongation of the 1–2 stereociliary rows next to the kinocilium continues, and more stereociliary bundles are oriented toward the inferior edge in cultured cochleae than in embryonic day 8 chicks. It appears that cochlear organ culture can serve as an effective method with which to study how hair cell differentation is regulated.