Mechanism of action of niacin on lipoprotein metabolism

Abstract
It is generally accepted that the increased concentrations of apolipoprotein (apo) B containing very low-density lipoproteins (VLDL) and low-density lipoproteins (LDL), and decreased levels of apo AI containing high-density lipoproteins (HDL) are correlated to atherosclerotic cardiovascular disease. Current evidence indicates that the post-translational apo-B degradative processes regulate the hepatic assembly and secretion of VLDL and the subsequent generation of LDL particles. The availability of triglycerides (TG) for the addition to apo B during intracellular processing appears to play a central role in targeting apo B for either intracellular degradation or assembly and secretion as VLDL particles. Based on the availability of TG, the liver secretes either dense TG-poor VLDL2 or large TG-rich VLDL1 particles, and these particles serve as precursors for the formation of more buoyant or small, dense LDL particles by lipid transfer protein- and hepatic lipase-mediated processes. HDLs are a heterogenous class of lipoproteins, and apo AI (the major protein of HDL) participates in reverse cholesterol transport, a process by which excess cholesterol is eliminated. Recent studies indicate that HDL particles containing only apo A-I (LPA-I) are more effective in reverse cholesterol transport and more anti-atherogenic than HDL particles containing both apo A-I and apo A-II (LPA-I+A-II).