Effects of temperature and composition on the thermal and electrical conductivities of Ni3Al

Abstract
The results of a study of the thermal conductivity, electrical resistivity, and Seebeck coefficient of Ni3Al are described. The thermal and electrical conductivities are sensitive to composition and attain their maximum values in well‐ordered, stoichiometric Ni3Al. Nonstoichiometry (antisite defects), and Fe (a substitutional solute) and B (an interstitial solute) contents are all about equally effective in reducing the transport properties. Even for stoichiometric Ni3Al, the temperature variation of the thermal and electrical conductivities resembles that of an alloy, and this is attributed to scattering associated with the loss of ferromagnetic order at ∼60 K. Experimental data and a theoretical analysis show that phonon conduction is an important part of the thermal conductivity and not very sensitive to composition or stoichiometry.