Evaluation of normalization methods for cDNA microarray data by k-NN classification
Open Access
- 26 July 2005
- journal article
- research article
- Published by Springer Nature in BMC Bioinformatics
- Vol. 6 (1) , 191
- https://doi.org/10.1186/1471-2105-6-191
Abstract
Background: Non-biological factors give rise to unwanted variations in cDNA microarray data. There are many normalization methods designed to remove such variations. However, to date there have been few published systematic evaluations of these techniques for removing variations arising from dye biases in the context of downstream, higher-order analytical tasks such as classification. Results: Ten location normalization methods that adjust spatial- and/or intensity-dependent dye biases, and three scale methods that adjust scale differences were applied, individually and in combination, to five distinct, published, cancer biology-related cDNA microarray data sets. Leave-one-out cross-validation (LOOCV) classification error was employed as the quantitative end-point for assessing the effectiveness of a normalization method. In particular, a known classifier, k-nearest neighbor (k-NN), was estimated from data normalized using a given technique, and the LOOCV error rate of the ensuing model was computed. We found that k-NN classifiers are sensitive to dye biases in the data. Using N ONRM and GMEDIAN as baseline methods, our results show that single-bias-removal techniques which remove either spatial-dependent dye bias (referred later as spatial effect) or intensity-dependent dye bias (referred later as intensity effect) moderately reduce LOOCV classification errors; whereas double-bias-removal techniques which remove both spatial- and intensity effect reduce LOOCV classification errors even further. Of the 41 different strategies examined, three two-step processes, IG LOESS-SL FILTERW7, IST SPLINE-SL LOESS and IG LOESS-SL LOESS, all of which removed intensity effect globally and spatial effect locally, appear to reduce LOOCV classification errors most consistently and effectively across all data sets. We also found that the investigated scale normalization methods do not reduce LOOCV classification error. Conclusion: Using LOOCV error of k-NNs as the evaluation criterion, three double-bias-removal normalization strategies, IG LOESS-SL FILTERW7, IST SPLINE-SL LOESS and IG LOESS-SL LOESS, outperform other strategies for removing spatial effect, intensity effect and scale differences from cDNA microarray data. The apparent sensitivity of k-NN LOOCV classification error to dye biases suggests that this criterion provides an informative measure for evaluating normalization methods. All the computational tools used in this study were implemented using the R language for statistical computing and graphics.Keywords
This publication has 40 references indexed in Scilit:
- A benchmark for Affymetrix GeneChip expression measuresBioinformatics, 2004
- Variation in Gene Expression Patterns in Human Gastric CancersMolecular Biology of the Cell, 2003
- Chromosome aberrations in solid tumorsNature Genetics, 2003
- New normalization methods for cDNA microarray dataBioinformatics, 2003
- Gene Expression Patterns in Renal Cell Carcinoma Assessed by Complementary DNA MicroarrayThe American Journal of Pathology, 2003
- Transformations for cDNA Microarray DataStatistical Applications in Genetics and Molecular Biology, 2003
- Microarray data normalization and transformationNature Genetics, 2002
- Ranking: a closer look on globalisation methods for normalisation of gene expression arraysNucleic Acids Research, 2002
- Distinct types of diffuse large B-cell lymphoma identified by gene expression profilingNature, 2000
- Ratio-based decisions and the quantitative analysis of cDNA microarray imagesJournal of Biomedical Optics, 1997