Preferential expression of one -tubulin gene during flagellate development in Physarum

Abstract
The microbial eukaryote Physarum polycephalum displays several distinct cell types in its life cycle, including amoebae, flagellates and plasmodia. Despite its relative simplicity, Physarum has a tubulin gene family of complexity comparable to that of Drosophila. We have identified beta-tubulin cDNAs from Physarum that are derived from the betA beta-tubulin locus and encode beta 1A tubulin. We have also identified a partial cDNA for the unlinked betB beta-tubulin gene, which encodes beta 1B tubulin. The polypeptide sequences encoded by betA and betB show 99% identity, but the nucleotide sequences show only 85% identity, consistent with an ancient duplication of these genes. The betB gene is expressed in amoebae, flagellates and plasmodia, whereas betA is expressed only in amoebae and flagellates. During the amoeba-flagellate transition the level of betA transcript increases over 100-fold, while the level of betB transcript changes very little. Thus Physarum has a mechanism for regulating the level of discrete beta-tubulin transcripts differentially during flagellate development. A need for this differential regulation could account for the maintenance of the virtually isocoding betA and betB beta-tubulin genes.

This publication has 0 references indexed in Scilit: