Identification of an antimalarial synthetic trioxolane drug development candidate
Top Cited Papers
- 1 August 2004
- journal article
- letter
- Published by Springer Nature in Nature
- Vol. 430 (7002) , 900-904
- https://doi.org/10.1038/nature02779
Abstract
The discovery of artemisinin more than 30 years ago provided a completely new antimalarial structural prototype; that is, a molecule with a pharmacophoric peroxide bond in a unique 1,2,4-trioxane heterocycle1. Available evidence2,3,4 suggests that artemisinin and related peroxidic antimalarial drugs exert their parasiticidal activity subsequent to reductive activation by haem, released as a result of haemoglobin digestion by the malaria-causing parasite. This irreversible redox reaction produces carbon-centred free radicals, leading to alkylation of haem5 and proteins (enzymes)6, one of which—the sarcoplasmic-endoplasmic reticulum ATPase PfATP6 (ref. 7)—may be critical to parasite survival. Notably, there is no evidence of drug resistance to any member of the artemisinin family of drugs8. The chemotherapy of malaria has benefited greatly from the semi-synthetic artemisinins artemether and artesunate as they rapidly reduce parasite burden, have good therapeutic indices and provide for successful treatment outcomes9. However, as a drug class, the artemisinins suffer from chemical10 (semi-synthetic availability, purity and cost), biopharmaceutical11 (poor bioavailability and limiting pharmacokinetics) and treatment8,11 (non-compliance with long treatment regimens and recrudescence) issues that limit their therapeutic potential. Here we describe how a synthetic peroxide antimalarial drug development candidate was identified in a collaborative drug discovery project.Keywords
This publication has 27 references indexed in Scilit:
- Artemisinin derivatives: toxic for laboratory animals, safe for humans?Toxicology Letters, 2004
- Virtual drug discovery and development for neglected diseases through public–private partnershipsNature Reviews Drug Discovery, 2003
- Artemisinins target the SERCA of Plasmodium falciparumNature, 2003
- Molecular Properties That Influence the Oral Bioavailability of Drug CandidatesJournal of Medicinal Chemistry, 2002
- Medical need, scientific opportunity and the drive for antimalarial drugsNature, 2002
- 18O-Tracer Studies of Fe(II)-Induced Decomposition of 1,2,4-Trioxolanes (Ozonides) Derived from Cyclopentenes and Indenes. Inner-Sphere Electron Transfer Reduction of the Peroxide LinkageJournal of the American Chemical Society, 1999
- Antimalarial drug resistance and combination chemotherapyPhilosophical Transactions Of The Royal Society B-Biological Sciences, 1999
- Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settingsAdvanced Drug Delivery Reviews, 1997
- Qinghaosu (Artemisinin): an Antimalarial Drug from ChinaScience, 1985
- Über Konstitution und Entstehung der Ozonide von Bis‐adamantyliden und von Bis‐bicyclo [3.3.1]non‐9‐ylidenEuropean Journal of Inorganic Chemistry, 1975