Cortisol kinetics and fluid distribution in brook trout (Salvelinus fontinalis)

Abstract
Cortisol kinetics were examined in brook trout (Salvelinus fontinalis) to assess possible relationships with body fluid distribution during acclimation to sea water (SW). The disappearance curve of [3H]cortisol in plasma, after a bolus injection, was analysed by compartmental analysis using a three-pool mammillary model. The results indicated that only ∼ 10% of the total exchangeable cortisol was located in the plasma pool. Over 75% of the total cortisol was associated with a large slowly exchanging pool and the remaining cortisol was located in a second extravascular tissue pool which was in rapid exchange with the plasma pool. Two days after transfer of trout from fresh water to SW, when plasma chloride concentration was at a new steady state, body weight, intracellular fluid volume, haematocrit and inulin clearance rate were lowered but plasma, blood and extracellular volumes were unaltered. Cortisol plasma clearance rate was unaltered but plasma cortisol concentration, cortisol secretion rate, total cortisol pool size and interpool transport rates were increased. These results are consistent with an acute role for cortisol in SW adaptation of brook trout. The fraction of the total cortisol cleared was smaller and the average time that cortisol spent in the tissue pools was slightly longer in trout after transfer to SW, possibly reflecting altered fluid dynamics. The fractional disappearance rate was larger at higher plasma cortisol concentrations in the SW trout. This relationship is compatible with the hypothesis that cortisol protein binding protects cortisol from metabolism. J. Endocr. (1985) 107, 57–69