A complete family of separability criteria
Preprint
- 5 November 2003
Abstract
We introduce a new family of separability criteria that are based on the existence of extensions of a bipartite quantum state $\rho$ to a larger number of parties satisfying certain symmetry properties. It can be easily shown that all separable states have the required extensions, so the non-existence of such an extension for a particular state implies that the state is entangled. One of the main advantages of this approach is that searching for the extension can be cast as a convex optimization problem known as a semidefinite program (SDP). Whenever an extension does not exist, the dual optimization constructs an explicit entanglement witness for the particular state. These separability tests can be ordered in a hierarchical structure whose first step corresponds to the well-known Positive Partial Transpose (Peres-Horodecki) criterion, and each test in the hierarchy is at least as powerful as the preceding one. This hierarchy is complete, in the sense that any entangled state is guaranteed to fail a test at some finite point in the hierarchy, thus showing it is entangled. The entanglement witnesses corresponding to each step of the hierarchy have well-defined and very interesting algebraic properties that in turn allow for a characterization of the interior of the set of positive maps. Coupled with some recent results on the computational complexity of the separability problem, which has been shown to be NP-hard, this hierarchy of tests gives a complete and also computationally and theoretically appealing characterization of mixed bipartite entangled states.
Keywords
All Related Versions
This publication has 0 references indexed in Scilit: