Abstract
In Saccharomyces cerevisiae, replication origins are activated with characteristic timing during S phase. S-phase cyclin-dependent kinases (S-CDKs) and Cdc7p-Dbf4p kinase are required for origin activation throughout S phase. The activation of S-CDKs leads to association of Cdc45p with chromatin, raising the possibility that Cdc45p defines the assembly of a new complex at each origin. Here we show that both Cdc45p and replication protein A (RPA) bind to Mcm2p at the G1-S transition in an S-CDK-dependent manner. During S phase, Cdc45p associates with different replication origins at specific times. The origin associations of Cdc45p and RPA are mutually dependent, and both S-CDKs and Cdc7p-Dbf4p are required for efficient binding of Cdc45p to origins. These findings suggest that S-CDKs and Cdc7p-Dbf4p promote loading of Cdc45p and RPA onto a preformed prereplication complex at each origin with preprogrammed timing. TheARS1 association of Mcm2p, but not that of the origin recognition complex, is diminished by disruption of the B2 element ofARS1, a potential origin DNA-unwinding element. Cdc45p is required for recruiting DNA polymerase α onto chromatin, and it associates with Mcm2p, RPA, and DNA polymerase ɛ only during S phase. These results suggest that the complex containing Cdc45p, RPA, and MCMs is involved in origin unwinding and assembly of replication forks at each origin.