Abstract
Ca2+ binding between lamellae of phosphatidylserine (PS) and phosphatidylcholine (PC) gives rise to a rigid phase of Ca(PS)2. When aqueous CA2+, hydrated PS/PC, and Ca(PS)2 coexist at equilibrium the aqueous Ca2+ concentration is invariant and is chracteristic of the PS/PC ratio. This characteristic Ca2+ concentrations is 0.040 .mu.M for palmitoyloleoylphosphatidylserine without PC and increases as the inverse square of the PS mole fraction at high PS concentration (Raoult''s law) and as the inverse square of the PS mole fraction multiplied by a constant at low PS concentration (Henry''s law). For example, for palmitoyloleoylphosphatidylserine/palmitoyloleoylphosphatidylcholine = 0.6/0.4 or 0.2/0.8, this characteristic Ca2+ concentration is about 0.1 or about 6 .mu.M, respectively. These observations at constant temperature are summarized in a quaternary phase diagram for the four-component system CaCl2/PS/PC water.

This publication has 19 references indexed in Scilit: